2022.9 .6

Prebiminary Algebraic Geometry．

- 杨金榜，地空楼 525
- 助教自我介绍
- 交作业与发作业时间：周二上谒前后。

平时成溃（ 100^{1} ）p
期未成绩（1001）q
最终成溃： $\max \{q, 0.2 \times p+0.8 \times q\}$
eg．

Algebraic geomerny＝studying zeros of multivarate polynomials by using of abstract algebraic technique．
fundamental offeers＝algebraic vanéties
aim of this course：study algeforaic curves．
S.1. algebraic preliminaries.

Ring means a commutative ring with multiplicative identity. (in this course)
domain $=$ ring + cancellation law ($=$ without zerodinsurs)
field $=$ ring + every non zero element is a unit.
egg. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_{P}, \mathbb{Z}[x], \cdots$
ring homomorphism $=$ map preserves $+, \cdot, 1$.
ideals and quotient ring (residue dhs ring)
$I \triangleleft R \Rightarrow$ ring homo. $R \rightarrow R / I$
Fact: (1). $\operatorname{Hon}_{\text {ring }}(R / I, s) \xrightarrow{\mid: 1}\left\{\varphi: R \rightarrow s \left\lvert\, \begin{array}{l}\varphi=\text { ing. Lan. } \\ \varphi(I)=0\end{array}\right.\right\}$.
(2). $I=$ prime $\Leftrightarrow R / I=$ domain
(3). $I=$ maximal $\Leftrightarrow R / 1=$ fold
(4). maximal \Rightarrow prime.

Characteristic. Let R be a ring

$$
\text { Char } R:= \begin{cases}\min \Sigma & \Sigma:=\left\{n \in \mathbb{Z}_{\geqslant 1} \mid \widetilde{1+1+\cdots+1}=0 \text { in } R\right\} \neq \phi \\ 0 & \Sigma=\phi\end{cases}
$$

e.g. $\quad \operatorname{char}(\mathbb{z} / \mathrm{n} \mathbb{z})=n, \quad \operatorname{char}(\mathbb{Z})=0, \quad \operatorname{char}(\mathbb{R})=0=\operatorname{char}(\mathbb{C})$.
(2) Face: $R=$ domain \Rightarrow char $R=0$ or char $R=$ prime number

从已有的环构草新环：
quotient field k of a domain R ：
w ，fido of fractions

$$
K=\{(a, b) \mid a \in R \backslash\{\operatorname{ar}\}, b \in R\} / \sim \quad(a, b) \sim(c, d) \Leftrightarrow a d=b c
$$

Fact：let L be a fold，then

$$
\operatorname{Hom}_{\text {ring }}(k, L) \xrightarrow{1: 1} H_{o m}{ }_{\text {in j }}^{\text {in j }}(R, L)
$$

ie．every infective ring homomorphism $R c L$ extends uniquely st a rios home $K \leftrightarrow L$ ．
$R\left[x_{1}, \cdots, x_{n}\right]=$ ring of polynomials in n variables over a ring R
－We call $F=\sum_{i} a_{i} x^{i} \in R\left[x_{i:}: x_{n}\right]$ homogeneous or a form of degree d if $a_{i}=0 \quad \forall i:|i| \neq d$.

$$
\cdot \operatorname{dog} F:=d
$$

where F_{i} is a form of degree i ．
Fact：let $\varphi: \Omega \rightarrow S$ be a ring chonomorphism．Then

$$
\begin{aligned}
& \operatorname{Hom}_{R-a l y}\left(R\left[x_{1} ; \cdots, x_{n}\right], s\right) \xrightarrow{1: 1} S^{\oplus n} \\
& \tilde{\varphi} \longmapsto\left(\tilde{\varphi}\left(x_{1}\right), \cdots, \tilde{\varphi}\left(x_{n}\right)\right) \\
& \left\{\tilde{\varphi} \in \operatorname{Hom}_{\text {ring }}\left(R\left[x_{1} \ldots x_{1}\right], s\right)|\tilde{\varphi}|_{R}=\varphi\right\}
\end{aligned}
$$

e．g．$\quad \operatorname{Hom}_{\mathbb{C}-a \lg }\left(\mathbb{C}\left[x_{1} ; \cdots, x_{0}\right], \mathbb{C}\right) \xrightarrow{\mathbb{C}} \mathbb{C}^{n}$ ．
algebraically closed field.
$R=$ ring, $a \in R$ \& $F \in R[x]$. Then

$$
F(a)=0 \Rightarrow \exists!G \in R[x] \text { sit. } F=(x-a) G \text {. }
$$

Def: A field is algebraically dosed if any nonconstant $F \in k[x]$ hes a root.
Fact: Lex $k=\bar{k}$ be an algebraically closed field. Then
(i). $F=\mu \Pi\left(x-\lambda_{i}\right)^{e_{i}} \quad \mu \in k^{*}, \lambda_{i} \in k$ distinct roots of f
(ii). $\operatorname{deg} F=\sum_{i} e_{i}$

Example: © is algebraically closed.

Fact: Any alg. closed field is infinite.

